Canadian Bioinformatics Workshops

www.bioinformatics.ca
Creative Commons Attribution-Share Alike 2.5 Canada

You are free:

to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar licence to this one.

• For any reuse or distribution, you must make clear to others the licence terms of this work.
• Any of the above conditions can be waived if you get permission from the copyright holder.
• The author's moral rights are retained in this licence.

Disclaimer
Module 5 -
1D automated gating

Radina Droumeva

Bioinformatics Specialist, BC Cancer Agency
Vancouver, British Columbia, Canada

CBW: Flow Cytometry Data Analysis using R
June 18, 2013
We are starting with the preprocessed transformed data from Day 1. The analysis will consist of the following steps:

- Gate the CD3+ live cells using 1D gating (similar to what we did to get rid of debris). This will rely on a pooled sample to set the gates.
- Define a single threshold as a gate for each of the channels. This will again use a pooled sample to help us choose the thresholds.
- Use flowDensity to define the gates for us instead of eye-balling it!
- Visually assess the suitability of the gates
- Next steps: flowType and RchyOptimyx.
Removing dead cells and CD3- cells

Clear current workspace, close plots, load libraries
rm(list=ls())
graphics.off()
library(flowCore)
library(flowDensity)
library(GEOmap)

Tell R which directory we are working in and load the transformed flowSet object:
setwd(’/home/rguru/Documents/Workshop/data’)
load(’trans.fs.RData’)
trans.fs

Let’s gate the CD3+ live cells!

cd3 ← "R780-A"
dump ← "V450-A"

First create a pooled flowFrame:
source("../code/supportCode/support_functions.R")
pooled.frame ← getGlobalFrame(trans.fs)
plotDens(pooled.frame, c(cd3, dump))
Removing dead cells and CD3- cells (continued)

By looking at this, it looks like CD3 = 1 and Dump Channel = 1.5 are good gates
abline(v = 1, lwd=2, col = "blue")
abline(h = 1.5, lwd=2, col="blue")

Let’s verify by plotting whole flowSet:
par(mfrow = c(5, 4), mar = c(3, 3, 2, 1), mgp = c(2, 1, 0))
for (i in 1:length(trans.fs)){
 plotDens(trans.fs[[i]], c(cd3, dump))
 abline(v = 1, lwd=2, col = "blue")
 abline(h = 1.5, lwd=2, col="blue")
}

Module 5: 1D Autogating
Removing dead cells and CD3- cells (continued)

1 # Looks pretty good. Now let’s isolate the viable cells into a new flowSet:
2 viable.fs ← trans.fs
3
4 # This time, instead of a for loop, let’s use 'fsApply’. It applies a single function to each flowFrame object. So, we must first write our very own function! To do this, we must imagine we are only working with a single flowFrame and write the algorithm to isolate the viable cells for it:

5 # Code for single flowFrame:
6 f ← trans.fs[[1]]
7 cd3pos.indices ← which(exprs(f)[, cd3] > 1)
8 dumpneg.indices ← which(exprs(f)[, dump] < 1.5)
9 combined ← intersect(cd3pos.indices, dumpneg.indices)
10 viable.f ← f[combined]
Removing dead cells and CD3- cells (continued)

Is this right? Let's check:

```r
graphics.off()
plot(exprs(f)[, c(cd3, dump)], pch=".")
points(exprs(viable.f)[, c(cd3, dump)], pch=".", col = "green4")

# See ?chull for an idea of how to plot a gate using lines instead of just a different colour: run the example in the helpf file!
```
Writing our own function

1 # This is how you create your own function in R:
2 # 1) Give it a name of your choice, make sure it is uncommon enough that it won’t accidentally interfere with existing R functions! I.e. don’t create a function called "read.FCS" or "plot" or "which"!
3
4 # 2) inside the 'function(.)' put a variable name which will be only used within the function. I chose 'f', but you can call it 'x' and replace all the 'f’s inside the function with 'x’s.
5
6 getViableFrame ← function(f){
7 # Manipulate the input 'f':
8 cd3pos.indices ← which(exprs(f)[, cd3] > 1)
9 dumpneg.indices ← which(exprs(f)[, dump] < 1.5)
10 combined ← intersect(cd3pos.indices, dumpneg.indices)
11 viable.f ← f[combined]
12 # Finally, return the desired altered version of the input :
13 return (viable.f)
14 }
15
16 # Now use the function instead (1 line of code instead of 5)
17 viable.f ← getViableFrame(f)
Using fsApply and our function

```r
# Now we can use fsApply:
viable.fs ← fsApply(trans.fs, getViableFrame)

# Let's look at the proportions of live cells:
live.counts ← fsApply(viable.fs, nrow)/fsApply(trans.fs, nrow)
plot(density(live.counts), main = "Proportion CD3+ viable cells")

# It kind of looks like two peaks in the density. Can we do anything interesting just with this information?

# Let's extract the clinical information we have first.
# For this workshop, I have selected 20 FCS files for patients which have an event reported -- either death or progression to AIDS. We have the number of days before the event occurred. In fact, that information is stored inside the FCS keywords!
survival ← fsApply(viable.fs, function(x) x@description$‘CD Survival time from seroconversion‘)

# Let's convert this to numbers so we can work with them:
survival ← as.numeric(survival)
plot(survival, live.counts, pch = 19)
```
Try kmeans:
km ← kmeans(live.counts, 2)
plot(survival, live.counts, pch = 19, col = km$cluster, main = "K-means misclassifies 3 samples from each group.")

Too few samples, but it looks like more of the low-survival patients have lower CD3+live proportions also.

For a really good explanation of k-means and hierarchical clustering, see Andrew Moore’s slides: http://www.autonlab.org/tutorials/kmeans11.pdf
Automated density gating: using flowDensity’s ’deGate’ function

1 # So far we have preprocessed our data and have now isolated the live CD3+ cells.
2 # Let’s now consider automated gating for the remainder of the analysis.
3 # Consider CD4 first:
4 cd4 ← "V655-A"
5 pooled.frame ← getGlobalFrame(viable.fs)
6 par(mfrow = c(1, 2), mar = c(3, 3, 2, 1), mgp=c(2, 1, 0))
7 plotDens(pooled.frame, c(cd3, cd4))
8
9 # Try flowDensity -- the function ’deGate’:
10 cd4.gate ← deGate(pooled.frame, cd4)
11 abline(h = cd4.gate, lwd=2, col="blue")
12 # Looks good, how did it do it?
13 deGate(pooled.frame, cd4, graphs=TRUE)
Automated gating: the other channels

```r
# Try for every channel (except scatter, CD3 and the dump channel):
kis ← "B515-A"
cd8 ← "V800-A"
cd127 ← "G560-A"

# This time we will record the gates for all channels into a vector
store.gates ← rep(-Inf, 4)
names(store.gates) ← c(cd4, cd8, cd127, kis)
store.gates
par(mfrow = c(2, 2))
for (chan in c(cd4, cd8, cd127, kis)){
  plotDens(pooled.frame, c(cd3, chan))
  store.gates[chan] ← deGate(pooled.frame, chan)
  abline(h = store.gates[chan])
}
store.gates

V655-A V800-A G560-A B515-A
1.498441 1.696377 1.715627 2.241605
```
Visualizing the automated gating

Module 5: 1D Autogating

bioinformatics.ca
All looks good except for CD127. Let’s work on it:

```r
par(mfrow = c(5, 4), mar = c(3, 3, 1, 1), mgp=c(2, 1, 0))

for (i in 1:length(viable.fs)) {
    plotDens(viable.fs[[i]], c("SSC-A", cd127))
}
```

Still not obvious where the gate should be. This is where a control would be necessary! Let’s ignore CD127.
Check gates for all channels

1 # Let's at least make sure CD4, CD8 and KI67 work for all samples:
2 # First a plot of CD4 - CD8
3 par(mfrow=c(5,4), mar = c(3, 2, 2, 1), mgp=c(2, 1, 0))
4 for (i in 1:20){
5 plotDens(viable.fs[[i]], c(cd4, cd8))
6 abline(v = store.gates[cd4], lwd=2, col="blue")
7 abline(h = store.gates[cd8], lwd=2, col="blue")
8 }

10 # Then a plot for CD8 - KI67:
11 par(mfrow=c(5,4), mar = c(3, 2, 2, 1), mgp=c(2, 1, 0))
12 for (i in 1:20){
13 plotDens(viable.fs[[i]], c(cd8, ki67))
14 abline(v = store.gates[cd8], lwd=2, col="blue")
15 abline(h = store.gates[ki67], lwd=2, col="blue")
16 }
Looks pretty good! Now what? flowType!
How to be a great programmer while eating lunch

Sometimes certain things take time to run. If you are a great programmer, you will plan your work day accordingly!
Run the following (should take about 10 mins) while you are out for lunch:

```r
# If you don’t have flowType, i.e. if library(flowType) doesn’t work):
source("http://bioconductor.org/biocLite.R")
biocLite('rrcov')
biocLite('codetools')
biocLite('foreach')
biocLite('flowMerge')
biocLite('flowType')
biocLite('RchyOptimyx')
library(flowType)
library(RchyOptimyx)
```

Module 5: 1D Autogating bioinformatics.ca
Using flowType

1 # For convinience, rename the channels of the flowSet to
 more phenotype-friendly names:
2 colnames(viable.fs) ← c("FSC-A", "FSC-H", "SSC-A", "KI67", "CD3", "CD8", "CD4", "Dump", "CD127")

3 # Now we run flowType on a single flowFrame to see how it
 works. It is hard!
4 # Frame is your flowFrame object.
5 # PropMarkers are the indices or markers which you want to
 involve in the analysis. For us, CD4 is the 7th marker
 in the list above, CD8 is the 6th, and KI67 is the 4th.
 How you order them does not matter as long as you are
 consistent.
7 # Methods are the gate threshold values in the same order as
 above.
8 # MarkerNames is the full vector of all channel names.
9 ft1 ← flowType(Frame = viable.fs[[1]], PropMarkers=c(7, 6, 4), Methods=store.gates[c(cd4, cd8, ki67)], MarkerNames=colnames(viable.fs))
10 # Examine ft1 -- see what’s in there.
11 # In the console below type f1@ and then press your tab key
 to see available components to explore!
Using flowType (continued)

Next, use fsApply to compute all phenotypes for the whole flow set.

Notice that we have our own function defined within the fsApply call -- you can do this if your function is so short, that you don’t need to define it separately. Also notice the '/nrow(x)' part -- this is so that instead of cell counts we get cell proportions. We cannot use cell counts because the total number of starting cells is different for the different samples.

```r
ft ← fsApply(viable.fs, function(x) flowType(x, PropMarkers=c(7, 6, 4), Methods=store.gates[c(cd4, cd8, ki67)], MarkerNames=colnames(viable.fs))@CellFreqs/nrow(x))
rownames(ft) ← sampleNames(viable.fs)
ft
```

```
    CD4-CD8-  CD4-CD8-KI67+  CD4-KI67-
185809.fcs 0.1319049 0.010880482 0.5400067
202318.fcs 0.1221902 0.005763689 0.3729107
```
We want to identify phenotypes which separate our data into two groups based on survival times. We can calculate some p-values to use as a guage on the phenotypes’ importance.

First, let’s remove samples with very low live CD3+ counts (say < 1000 cells):

remove.low ← which(as.numeric(fsApply(viable.fs, nrow)) < 1000)

ft ← ft[-remove.low,]

Keep track of survival time before removing low viable count samples just in case we need it later

full.survival.data ← survival

survival ← survival[-remove.low]

Now identify the patients with survival less than 1000 days and over (from an earlier plot this looks like the dividing number!)

group1 ← which(survival < 1000)
group2 ← which(survival > 1000)
Calculate the p-values. Here is the p-value for a single phenotype:

```r
one.pval <- t.test(ft[group1, "CD4-CD8+"], ft[group2, "CD4-CD8+"])$p.value
```

Use a for loop to calculate the p-values by looping over all phenotypes.

Initialize a vector of p-values to be all 1:

```r
pvals <- rep(1, ncol(ft)) # ncol is the number of phenotypes!
for (i in 1:ncol(ft)) {
  if (sd(ft[, i]) == 0) { # if no variation in the phenotype measurement, the p-value will be undefined.
    pvals[i] <- 1
  } else {
    pvals[i] <- t.test(ft[group1, i], ft[group2, i])$p.value
  }
}
```

```r
names(pvals) <- colnames(ft)
pvals
```
Using RchyOptimyx

1 # Now we can use the p-values as a way to score each phenotype's importance. However, we want to find the phenotype with the fewest number of markers (most robust, efficient, cheap to make into a panel) without losing much of the ability to separate the patients with low survival time from those with high survival time. Instead of 'pvals' though, let's use -log10 (pvals). Typically the lower the p-value is, the better the phenotype is. By taking the -log10 of the p-value as the score, we can now say the higher the score -- the better the phenotype.

2 # First, RchyOptimyx wants us to provide all possible phenotype combinations in terms of '+' or '-' combinations of markers. Here we use '0' for a negative expression of a marker, '1' if the marker is neutral (not involved in the phenotype at all), and '2' for a positive expression of the marker. 'Signs' contains this required variable. (very computer science-y, but we are working on an easier version of flowType and RchyOptimyx right now!)

3 library(sfsmisc)
4 Signs ← t(digitsBase(1:(3^3-1), 3, ndigits=3))
5 rownames(Signs) ← colnames(ft)
6 colnames(Signs) ← c("CD4", "CD8", "KI67")
Using RchyOptimyx (continued)

1 # Now to run RchyOptimyx. Here are a couple of additional required parameters:
2 # startPhenotype: we don’t necessarily want RchyOptimyx to check ALL Possible phenotypes. We can specify one with a low p-value that we want it to reach by combining its constituent markers and their espression.
3 # For example, "012" means CD4-CD8(neutral)KI67+ == CD4-KI67 +.
4 # To get a broader view, we should not simply pick the one with the lowest value. We can generate a few RchyOptimyx trees and then merge them into one plot:
5 rch1 ← RchyOptimyx(Signs, -log10(pvals), startPhenotype = "012", trimPaths=FALSE, pathCount=6)
6 rch2 ← RchyOptimyx(Signs, -log10(pvals), "002", trimPaths=FALSE, pathCount=6)
7 rch3 ← RchyOptimyx(Signs, -log10(pvals), "202", trimPaths=FALSE, pathCount=6)
8 merged ← merge(rch1, merge(rch2, rch3)) # Can only merge two at a time!

Module 5: 1D Autogating
Using RchyOptimyx (continued)

```
# Instead of plotting in RStudio, let’s write this to a .pdf file!
# Specify file name:
pdf('/home//rguru/Documents/Workshop/rchy.pdf')
# Do your plotting:
plot(merged, phenotypeScores=-log10(pvals))
# Tell R you are done plotting and it is safe to write the information to the file.
dev.off()

# Let's also save the flowType results and p-values:
results ← rbind(ft, pvals)
rownames(results)[nrow(results)] ← "P-values (Uncorrected)"
write.csv(results, file="/home/rguru/Documents/Workshop/results.csv")

# Navigate to that folder to see the plot and .csv report!
```
What to do with RchyOptimyx results

See that the 'best' phenotype is KI67+

```r
ft[, "KI67+"]*100

par(mfrow=c(1,1))

boxplot(ft[group1, "CD4-KI67+"]*100, ft[group2, "CD4-KI67+"]*100, boxwex=0.2)
```

NOT great at all, but to be expected with such a small set of samples and small set of channels!!
What else could we try?

```r
# Just CD3+ counts:
only.live <- fsApply(trans.fs, function(x) x[which(exprs(x)[, "V450-A"] < 1.5)])

cd3counts <- fsApply(only.live, function(x) length(which(exprs(x)[, "R780-A"] > 1)))/fsApply(only.live, nrow)
t.test(cd3counts[which(full.survival.data > 1000)],
      cd3counts[which(full.survival.data < 1000)])
boxplot(cd3counts[which(full.survival.data > 1000)],
        cd3counts[which(full.survival.data < 1000)], boxwex=0.2)
```